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Memory difference control of unknown unstable fixed points:
Drifting parameter conditions and delayed measurement
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Difference control schemes for controlling unstable fixed points become important if the exact position of
the fixed point is unavailable or moving due to drifting parameters. We propose a memory difference control
method for stabilization ofa priori unknown unstable fixed points by introducing a memory term. If the
amplitude of the control applied in the previous time step is added to the present control signal, fixed points
with arbitrary Lyapunov numbers can be controlled. This method is also extended to compensate arbitrary time
steps of measurement delay. We show that our method stabilizes orbits of the Chua circuit where ordinary
difference control fails.@S1063-651X~98!09712-8#

PACS number~s!: 05.45.1b, 84.30.Ng, 07.50.Ek
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I. INTRODUCTION

Two main classes of control strategies are establishe
chaos control: The Ott-Grebogi-Yorke~OGY! control algo-
rithm @1#, almost a standard method for controlling cha
does not provide any readjustment of the fixed point dur
in situ measurements without loss of control. In many e
perimental systems, however, it is desirable to use a con
strategy that does not rely on the knowledge of the ex
position of the fixed point, because the location of the fix
points can change due to drifts in parameters. On the o
hand, the time-continuous control method proposed by P
gas@2# is practically limited by the required sampling rat
and does not allow stabilization of arbitrary orbits as h
recently been shown in@3#.

Both problems are circumvented by simple time-discr
difference control@4#. It is limited to a certain range o
Lyapunov numbers. Control of arbitrary periodic orbits c
be achieved if the algorithm is applied only every seco
period @4,5# or by a memory method.

In this paper we present an improved memory differen
control ~MDC! method that takes control amplitudes in
account that were applied at previous time steps. MDC
lows one to stabilize drifting fixed points with arbitrar
Lyapunov numbers and shows an enlarged region of sta
ity.

This method is generalized when dealing with measu
ments delayed byt time steps~orbit periods!. This task is
accomplished by increasing the number of memorized c
trol amplitudes byt. Given the stable and unstable directio
of the fixed point with sufficient accuracy, only one acce
sible control parameter for each unstable direction is requ
to achieve control.

We compare difference control and MDC at the we
known Chua oscillator@6# and show that orbits for which
difference control fails are stabilized by MDC.

II. STABILIZATION OF FIXED POINTS
BY DIFFERENCE CONTROL

In experimental situations a Poincare´ section is commonly
used to reduce the dynamics to a time-discrete descriptio
an iterated map
PRE 581063-651X/98/58~6!/7256~5!/$15.00
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xW t115 fW~xW t ,rW !. ~1!

Here rW denotes a set of control parameters that are in
unperturbed dynamics assumed to be constant or varyin
a slow time scale compared to the length of a period orb

The idea to control chaos by small perturbations of co
trol parameters implies thatrW becomes time-dependent. Th
time-dependent control parameterrW t is updated at each dis
crete time step defined by the Poincare´ section. Its value is
determined according to the specific control algorithm and
kept constant for a part of the orbit. Without loss of gen
ality we choosexW* 50W and rW50W for the fixed point to be
stabilized. The linearized equation of motion around the
stable fixed point then becomes

xW t115LxW t1MrW t , ~2!

where

Li jª
] f i

]xj
U

xW* 50,rW50

and Mi jª
] f i

]r j
U

xW* 50,rW50

. ~3!

The Lyapunov numbers of the orbit are the eigenvalues oL.
Here one has to distinguish the Lyapunov number of an o
~or time-discrete map! from the local ~or conditional!
Lyapunov exponent and the commonly used glo
Lyapunov exponent being an ergodic average over the att
tor @7#. In principle it is possible to proceed with a multipa
rameter control by using as many control parameters as t
are degrees of freedom, i.e., dim(rW)5dim(xW ). Instead, it is
common to follow Ott, Grebogi, and Yorke@1# to transform
the system to the eigensystem ofL. Control is appliedonly in
the unstable subspace@8#. The evolution of the equation o
motion is again of the form of Eq.~2! with reduced dimen-
sion of L.

In difference control@4# the control parameter is update
at the Poincare´ section according to

rW t5K~xW t2xW t21!. ~4!
7256 © 1998 The American Physical Society
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In contrast to OGY control, difference control is limited
fixed points with Lyapunov numbers between23 and21
@4,5#. A stability diagram@9,5# for the case of one unstabl
eigenvalue is shown in Fig. 1.

Simple difference control uses information that is p
tially out of date, resulting in an additional degree of fre
dom from the delayed amplitudexW t11 . This fact is illustrated
by imagining two agents controlling the same system
turns. If they do not communicate, control fails because
the inherent delay of the system to be controlled. This eff
is compensated when using the information contained in
previous value of the control amplituderW t21 .

III. MEMORY DIFFERENCE CONTROL

We define memory difference control by@10#

rW t5K~xW t2xW t21!1NrW t21 . ~5!

Combined with Eq.~2!, we obtain a dynamical system whic
reads in delayed coordinates forxW and rW,

S xW t11

xW t

rW t

D 5S L1MK 2MK MN

1 0 0

K 2K N
D S xW t

xW t21

rW t21

D . ~6!

In order to stabilize the fixed point, all eigenvaluesa i of the
matrix in Eq.~6! must have a modulus smaller than 1. Th
ensures exponential convergence to the fixed point. If
parameter values are chosen such that all eigenvalues
come zero, the fixed point is reached after a finite numbe
time steps. In fact this can be guaranteed by MDC. We fi
assume thatM and (L21) are both invertible, and that th
number of accessible control parameters is equal to
greater than the dimension of the unstable manifold,
dim(rW)>dim(xW ). Then all eigenvalues are zero@11,12# if

K52M 21L2~L21!21,

N5M 21L~L21!21M . ~7!

The concept of MDC can be generalized to stabilizat
of ~known and unknown! fixed points whenxW can be mea-
sured only after a finite number of delay steps@11,13#: If the
system is measured witht steps delay, Eq.~7! is replaced by

FIG. 1. Stability area for difference control~one unstable
Lyapunov numberL): For uLu,1 the system is stable without con
trol. Fixed points with Lyapunov number23,L,21 can be con-
trolled if MK is chosen within the area bounded by the triangle. T
line within the triangle shows the optimal value forMK.
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K52M 21Lt12~L21!21, ~8!

Ni52M 21LiM , ;1< i<t , ~9!

Nt115M 21Lt11~L21!21M , ~10!

where the feedback now contains a sum overt11 preceding
control amplitudes:

rW t5K~xW t2t2xW t2t21!1 (
i 51

t11

NixW t2t2 i . ~11!

A similar control scheme can be applied for OGY control
choosingK52M 21Lt11 and Ni52M 21LiM (1< i<t).
For details see@11,13#.

IV. THE STABILITY DIAGRAM
IN THE ONE-DIMENSIONAL CASE

Since the optimal control values are never exac
matched in experiments, it is important to know the compl
stability diagram in (K,N), in particular the optimal value o
K for given N and vice versa. In the one-dimensional ca
the characteristic equation is given by

05a@a22~L1MK1N!a1~MK1NL!#. ~12!

The stability region in the (K,N) plane, i.e., where all eigen
values have modulus smaller than 1, is the triangle show
Fig. 2. Its corners are given by

~MK,N!11,115~12L,1!, ~13!

~MK,N!21,215S 2
~L11!2

~L21!
,
~L13!

~L21! D , ~14!

~MK,N!11,215~212L,1!, ~15!

where the eigenvalues take the values11 and21 as indi-
cated by the indices. Two sides of the triangle are determi
by the conditions that one eigenvalue is equal to11 and

e

FIG. 2. Stability region of memory difference control forL
522 in the (MK,N) plane. Within the triangle MDC is stable; th
contour lines show the decrease of the largest eigenvalue to ze
(MK,N)5(4/3,2/3).
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21, respectively. The third is given byMK1NL511
where the eigenvalues are a complex conjugate pair on
unit circle. The line that determinesN with minimal eigen-
values for a givenK ~and vice versa! is given by the alge-
braic expression

05~MK !212MKN1N21~2L24!MK22LN1L2,

where both eigenvalues coincide.

V. THE CHUA OSCILLATOR

We demonstrate the efficiency of the improved differen
method by controlling unstable periodic orbits of the chao
attractor of Chua’s oscillator@6#. The Chua circuit is an au
tonomous system~see Fig. 3!. The Poincare´ section neces-
sary for control is obtained by an electronic zero-cross
detector. The frequency is in the range ofn52p/ALC1
;3.6 kHz and allows the usage of digital signal process
tools to implement control algorithms.

Parameter drifts, e.g., temperature drifts, naturally oc
in electronic circuits and difference control methods have
advantage that they follow the drifting fixed point. In ord
to get access to an appropriate control parameter, a V
~voltage controlled resistor! has been added to the circu
The basic dynamics is nevertheless determined by the r
tor R.

Furthermore, the Chua circuit allows us to investigate
teresting ranges of Lyapunov numbers simply by choos
different values of the main control parameterR.

The dynamics of the Chua circuit is described, in fi

FIG. 3. Chua circuit: The negative resistance~NIC! is both non-
linearity and energy source of the circuit. Rough adjustment of
control parameter can be done by adjustingR. Control is applied
with the voltage-dependent resistor~VCR!.

FIG. 4. Return mapxt11(xt) in the Poincare´ surface of section
for three different values of the control parameter. From these
one obtains values ofL andM to adjust the optimal parameters o
control.
he
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approximation, by the normalized equations

u̇5a@v2u2 f ~u!#,

v̇5u2v1w, ~16!

ẇ52bv,

wheref is the input-output function of the negative resistan
approximately described by the piecewise linear descend
function

f ~u!5m0u1
1

2
~m12m0!~ uu11u2uu21u!, ~17!

with m0.m1 @14#. Rather than solving these equations n
merically, we demonstrate the stabilization of an unsta
periodic orbit directly in the electronic system.

VI. IMPROVED DIFFERENCE CONTROL
OF THE CHUA SYSTEM

The standard control strategy is to measure the requ
system variables, generate the Poincare´ map for, e.g., three
adjacent values of the control parameter~Fig. 4!, and to cal-
culate the parameters of the feedback to the control par
eter ~Fig. 5!.

In the present case the return mapxt11(xt ,zt) is approxi-
mately a function ofxt alone. Therefore only two variable
are required. The first one,yt , is used to determine the Poin
carésurface of section by a zero crossing detector. The s
ond one,xt , is used for the calculation of the control.

The stability region for different values of the memo

e

ta

FIG. 5. Implementation of the control method: One coordin
is used to generate the Poincare´ section. A digital signal processo
is used for measurement, computation, and application of the
trol amplitude.

FIG. 6. Stabilization of an orbit in the single-scroll chaotic a
tractor. Within the measured triangle memory difference con
stabilizes the orbit of the Chua circuit. The special case of sim
difference control is given byN50. The inset shows the attracto
and the stabilized periodic orbit.
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term N and feedback gainK is measured by changing th
values until control is entirely lost. The lower bound ofK is
easily recognized by a doubling of the stabilized perio
However, the upper bound ofK, where the loss of control is
noise-induced, is more difficult to estimate. In Fig. 6 t
stability region for a stabilized orbit in the single-scroll cha
is shown. The corresponding Lyapunov numberL522.15
60.04 has been calculated from the Poincare´ map. The sta-
bility diagram includes the stability region of simple diffe
ence control as the special case (N50). Stabilization of the
same periodic orbit in the double-scroll chaotic attractor
not possible with simple difference control. This is due to
Lyapunov number ofL523.2760.08 for which the method
is predicted to fail.

The stability region of the stabilized orbit in the singl
scroll ~Fig. 6! and double-scroll attractor~Fig. 7! have a
broad overlap. Thus it is possible to choose universal va
of (K,N) that allow tracking of an orbit from one regime t
the other without changing parameters of the controlling
cuit.

The significant improvement of memory difference co
trol compared to simple difference control is demonstra
by the estimation of Lyapunov exponents~contraction rates!
from the transient. Figure 8 shows the stability regimes
different feedback gainsK. Simple difference control corre
sponds toN50, and MDC toN50.7. The range of control
lability is broadened and the Lyapunov exponents
smaller, equivalent to faster convergence. The measurem
are in good agreement with our theoretical predictions~Fig.
8!. Due to noise-induced loss of control, it was impossible
obtain reliable measurements for largeK of the caseN
50.7.

VII. REESTIMATION OF LYAPUNOV NUMBERS
FROM THE BORDERS OF STABILITY

From the borders and corners of the measured stab
region, the exact values of the Lyapunov number of the c

FIG. 7. Stabilization of an orbit in the double-scroll chao
attractor: In agreement with theory, control without memoryN
50) fails, due to a Lyapunov numberL,23. Within the triangle
the orbit is stabilized by memory difference control. Again, attra
tor and orbit are shown in the inset.
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trolled cycle are reestimated, similar to the approach use
@15# for OGY control of the He´non map. Since two values o
N are exactly 1, four of the six coordinate values can be u
to determineL and M by a least-square fit weighted by th
variances of the measured values giving

Lss522.06960.03, Lds523.2460.03,
~18!

M ss50.37660.015, Mds50.48860.005,

for the orbit stabilized in the single-scroll~ss! and double-
scroll ~ds! attractor, respectively. These values are in go
agreement with the values given in Sec. VI, which were o
tained from the Poincare´ map ~Fig. 4!.

VIII. CONCLUSIONS

The dynamical behavior and stability conditions of diffe
ence control and memory difference control are fundam
tally different from the stability conditions@3# of time-
continuous Pyragas control@2#. In this paper we introduced
and discussed memory difference control as a powe
method to stabilize unstable fixed points even in the prese
of parameter drift or delayed measurement. Investigation
the Chua oscillator circuit demonstrated the reliability of t
method.

Memory difference control overcomes the Lyapun
number limitations of difference control and thus appears
be superior both to OGY and Pyragas control schemes.
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FIG. 8. Measured Lyapunov exponents of the control transie
for N50 andN50.7 ~single-scroll regime! compared to theoretica
Lyapunov exponents~lines! from the eigenvalue analysis.
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