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Memory difference control of unknown unstable fixed points:
Drifting parameter conditions and delayed measurement
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Difference control schemes for controlling unstable fixed points become important if the exact position of
the fixed point is unavailable or moving due to drifting parameters. We propose a memory difference control
method for stabilization ofx priori unknown unstable fixed points by introducing a memory term. If the
amplitude of the control applied in the previous time step is added to the present control signal, fixed points
with arbitrary Lyapunov numbers can be controlled. This method is also extended to compensate arbitrary time
steps of measurement delay. We show that our method stabilizes orbits of the Chua circuit where ordinary
difference control fails|S1063-651X98)09712-§

PACS numbes): 05.45:+b, 84.30.Ng, 07.50.Ek

I. INTRODUCTION - > > s
Xe+1= F(X¢,1). 1)
Two main classes of control strategies are established i

chaos control: The Ott-Grebogi-York©GY) control algo- Rerer denotes a set of control parameters that are in the

rithm [1], almost a standard method for controlling Chaos,unpertur_bed dynamics assumed to be constant or_varying on
does not provide any readjustment of the fixed point during® SIOW time scale compared to the length of a period orbit.
in situ measurements without loss of control. In many ex- 1he idea to control chaos by small perturbations of con-
perimental systems, however, it is desirable to use a contrdtol parameters implies thatbecomes time-dependent. The

strategy that does not rely on the knowledge of the exactime-dependent control parameteris updated at each dis-
position of the fixed point, because the location of the fixedcrete time step defined by the Poincaetion. Its value is
points can change due to drifts in parameters. On the othefetermined according to the specific control algorithm and is
hand, the time-continuous control method proposed by Pyrgeept constant for a part of the orbit. Without loss of gener-

gas[2] is practically limited by the required sampling rate, _,. S R - 2 ) .
and does not allow stabilization of arbitrary orbits as hasallty we choosex™ =0 andr=0 for the fixed point to be

recently been shown ifg]. stabilizgd. The_linearized equation of motion around the un-
Both problems are circumvented by simple time-discreteSt@ble fixed point then becomes
difference control[4]. It is limited to a certain range of R R R
Lyapunov numbers. Control of arbitrary periodic orbits can Xt+1=LX¢+Mry, 2
be achieved if the algorithm is applied only every second
period[4,5] or by a memory method. where
In this paper we present an improved memory difference
control (MDC) method that takes control amplitudes into af; of,
account that were applied at previous time steps. MDC al- Lij ol - and M P B €)
lows one to stabilize drifting fixed points with arbitrary Jhxx=0r=0 Ihxx=0r=0
h})//.apunov numbers and shows an enlarged region of StabllI'he Lyapunov numb_ers pf the orbit are the eigenvaluds of _
This method is generalized when dealing with rneasureHere.one has to distinguish the Lyapunov number.c_)f an orbit
ments delayed by time steps(orbit periods. This task is (O time-discrete map from the local (or conditional
accomplished by increasing the number of memorized conLyapunov exponent and the commonly used global
trol amplitudes byr. Given the stable and unstable directionsLyapunov exponent being an ergodic average over the attrac-
of the fixed point with sufficient accuracy, only one acces-tor [7]. In principle it is possible to proceed with a multipa-
sible control parameter for each unstable direction is requireéameter control by using as many control parameters as there
to achieve control. are degrees of freedom, i.e., dim&dim(x). Instead, it is
We compare difference control and MDC at the well- common to follow Ott, Grebogi, and YorKd] to transform
known Chua oscillatof6] and show that orbits for which  the system to the eigensystemLofControl is appliednlyin
difference control fails are stabilized by MDC. the unstable subspa¢8]. The evolution of the equation of
motion is again of the form of Eq2) with reduced dimen-
sion of L.
In difference contro[4] the control parameter is updated
In experimental situations a Poincarection is commonly ~ at the Poincarsection according to
used to reduce the dynamics to a time-discrete description by _ L
an iterated map ry=K(X¢—X¢—1). 4

Il. STABILIZATION OF FIXED POINTS
BY DIFFERENCE CONTROL
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FIG. 1. Stability area for difference contrgbne unstable 0
Lyapunov numbet.): For |L|<1 the system is stable without con-
trol. Fixed points with Lyapunov nhumber3<L<—1 can be con-
trolled if MK is chosen within the area bounded by the triangle. The
line within the triangle shows the optimal value fofK. -0.5
0 1 2 3
In contrast to OGY control, difference control is limited to MK

fixed points with Lyapunov numbers betweer8 and —1

[4,5]. A stability diagram[9,5] for the case of one unstable  FIG. 2. Stability region of memory difference control fr

eigenvalue is shown in Fig. 1. =—2 in the (MK,N) plane. Within the triangle MDC is stable; the
Simple difference control uses information that is par-contour lines show the decrease of the largest eigenvalue to zero in

tially out of date, resulting in an additional degree of free-(MK,N)=(4/3,2/3).

dom from the delayed amplitud§+1. This fact is illustrated

by imagining two agents controlling the same system in K=-M"1L7"2(L-1)"1, (8)
turns. If they do not communicate, control fails because of 1
the inherent delay of the system to be controlled. This effect Ni=-M""L'M, Vi ., 9

is compensated when using the information contained in the

> — =1y 7+1/1 _ -1
previous value of the control amplitude_; . N, 1=M7L7(L-1)""M, (10

where the feedback now contains a sum owerl preceding

I1l. MEMORY DIFFERENCE CONTROL control amplitudes:
We define memory difference control 0] T+1
R .. R re=K(X— ;= Xe— - 1)+ 2 NiXe_ . (11
re=K(X=X—1) +Nre_g. ) =1

A similar control scheme can be applied for OGY control by

Combined with Eq(2), we obtain a dynamical system which choosingK=—M-1L71 and N;=—M LM (1<i<17).

reads in delayed coordinates forandr, For details se¢11,13.
Xt+1 L+MK —MK MN Xt IV. THE STABILITY DIAGRAM
X | = 1 0 0 X1 | . (6) IN THE ONE-DIMENSIONAL CASE
r K -K N M1 Since the optimal control values are never exactly

matched in experiments, it is important to know the complete
In order to stabilize the fixed point, all eigenvalugsof the  stability diagram in K,N), in particular the optimal value of
matrix in Eq.(6) must have a modulus smaller than 1. ThisK for given N and vice versa. In the one-dimensional case,
ensures exponential convergence to the fixed point. If althe characteristic equation is given by
parameter values are chosen such that all eigenvalues be- )
come zero, the fixed point is reached after a finite number of 0=afa*—(L+MK+N)a+(MK+NL)]. (12

time steps. In fact this can be guaranteed by MDC. We flrstl_he stability region in theK,N) plane, i.e., where all eigen-

assume thaM and (L—1) are both invertible, and that the | h dul ller than 1. is the trianale sh .
number of accessible control parameters is equal to oprues have modLius sma er than 1, Is the triangle shown in
IE|g. 2. Its corners are given by

greater than the dimension of the unstable manifold, i.e.,

dim(r)=dim(x). Then all eigenvalues are zefbl,17 if (MK,N);+141=(1-L,1), (13
K=—-M"1L%L-1)"1, L+1)2 (L+3
(MK,N)_1 1= _((Lfl))il_fli : (14
N=M"1L(L—1) M. (7)
(MK!N)+1,—1:(_1_L11)1 (15)

The concept of MDC can be generalized to stabilization
of (known and unknownfixed points wherx can be mea- where the eigenvalues take the values and—1 as indi-
sured only after a finite number of delay st¢p4,13: If the  cated by the indices. Two sides of the triangle are determined
system is measured withsteps delay, Eq7) is replaced by by the conditions that one eigenvalue is equakt@ and
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3 —— FIG. 5. Implementation of the control method: One coordinate

= is used to generate the Poincaetion. A digital signal processor

FIG. 3. Chua circuit: The negative resistaridéC) is both non- is used for measurement, computation, and application of the con-

linearity and energy source of the circuit. Rough adjustment of thé"©! amplitude.
control parameter can be done by adjustiRgControl is applied

with the voltage-dependent resis(:CR). approximation, by the normalized equations
—1, respectively. The third is given bMK+NL=+1 u=afv—u=f(u)],
where the eigenvalues are a complex conjugate pair on the )
unit circle. The line that determines with minimal eigen- v=u—v+w, (16)
values for a giverK (and vice verspis given by the alge- )
braic expression w=— v,
0=(MK)2+2MKN+N?+(2L—4)MK —2LN+L?2, wheref is the input-output function of the negative resistance
approximately described by the piecewise linear descending
where both eigenvalues coincide. function
1
V. THE CHUA OSCILLATOR f(u)=mou+ 5 (Mg — mo)(Ju+1|—|u—1]), (17

We demonstrate the efficiency of the improved difference
method by controlling unstable periodic orbits of the chaoticWith me>m; [14]. Rather than solving these equations nu-
attractor of Chua’s oscillatdi6]. The Chua circuit is an au- merically, we demonstrate the stabilization of an unstable
tonomous systenisee Fig. 3 The Poincaresection neces- periodic orbit directly in the electronic system.
sary for control is obtained by an electronic zero-crossing

detector. The frequency is in the range o 2m/{LC, VI. IMPROVED DIFFERENCE CONTROL
~3.6 kHz and allows the usage of digital signal processing OF THE CHUA SYSTEM

tools to implement control algorithms. The standard irol strat is t th ired
Parameter drifts, e.g., temperature drifts, naturally occur € standard control strategy IS 10 measure the require

in electronic circuits and difference control methods have théﬁ?tem ;/arl;albles,fgiﬁnerat(te tl?e Pomozmgp f40r, e.dg.t’ thr(Iae
advantage that they follow the drifting fixed point. In order adjacent values of the control parameftéig. 4), and to cal-

fo get access to an appropriate control parameter, a Vcﬁulate the parameters of the feedback to the control param-

(voltage controlled resistpthas been added to the circuit. eter (Fig. 5.

The basic dynamics is nevertheless determined by the resis- In the present case the return map,(x,z) is approxi-
tor R. mately a function ofk; alone. Therefore only two variables

_are required. The first ong,, is used to determine the Poin-
aresurface of section by a zero crossing detector. The sec-
nd onex;, is used for the calculation of the control.

The stability region for different values of the memory

Furthermore, the Chua circuit allows us to investigate in
teresting ranges of Lyapunov numbers simply by choosin
different values of the main control parameker

The dynamics of the Chua circuit is described, in first
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FIG. 6. Stabilization of an orbit in the single-scroll chaotic at-
FIG. 4. Return magx,, 1(x;) in the Poincaresurface of section tractor. Within the measured triangle memory difference control
for three different values of the control parameter. From these datatabilizes the orbit of the Chua circuit. The special case of simple
one obtains values df andM to adjust the optimal parameters of difference control is given bjN=0. The inset shows the attractor
control. and the stabilized periodic orbit.
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FIG. 7. Stabilization of an orbit in the double-scroll chaotic
attractor: In agreement with theory, control without memoly (
=0) fails, due to a Lyapunov numbér< —3. Within the triangle
the orbit is stabilized by memory difference control. Again, attrac-
tor and orbit are shown in the inset.

FIG. 8. Measured Lyapunov exponents of the control transients
for N=0 andN=0.7 (single-scroll regimgcompared to theoretical
Lyapunov exponentflines) from the eigenvalue analysis.

trolled cycle are reestimated, similar to the approach used in
o _ [15] for OGY control of the Haon map. Since two values of
term N and feedback gaiK is measured by changing the N are exactly 1, four of the six coordinate values can be used

values until control is entirely lost. The lower boundkoiis to determinel and M by a |ea5t-square fit Weighted by the
easily recognized by a doubling of the stabilized period.variances of the measured values giving

However, the upper bound &, where the loss of control is
noise-induced, is more difficult to estimate. In Fig. 6 the

stability region for a stabilized orbit in the single-scroll chaos Lss=—2.06950.03, Lgs=—3.24+0.03,
is shown. The corresponding Lyapunov humher —2.15 (18)
+0.04 has been calculated from the Poincayap. The sta- M=0.376+0.015, M 4=0.488*0.005,

bility diagram includes the stability region of simple differ-
ence control as the special ca$¢<0). Stabilization of the
same periodic orbit in the double-scroll chaotic attractor isfor the orbit stabilized in the single-scraés and double-
not possible with simple difference control. This is due to ascroll (ds) attractor, respectively. These values are in good
Lyapunov number of = —3.27+0.08 for which the method agreement with the vqlues given in Sec. VI, which were ob-
is predicted to fail. tained from the Poincamnap (Fig. 4).

The stability region of the stabilized orbit in the single-
scroll (Fig. 6) and double-scroll attractofFig. 7) have a
broad overlap. Thus it is possible to choose universal values

of (K,N) that allow tracking of an orbit from one regime to  The dynamical behavior and stability conditions of differ-
the other without changing parameters of the controlling cirence control and memory difference control are fundamen-
cuit. tally different from the stability conditiong3] of time-
The significant improvement of memory difference con-continuous Pyragas contrf2]. In this paper we introduced
trol compared to simple difference control is demonstratechnd discussed memory difference control as a powerful
by the estimation of Lyapunov exponeritontraction rates  method to stabilize unstable fixed points even in the presence
from the transient. Figure 8 shows the stability regimes forof parameter drift or delayed measurement. Investigations of
different feedback gaink. Simple difference control corre- the Chua oscillator circuit demonstrated the reliability of the
sponds taN=0, and MDC toN=0.7. The range of control- method.
lability is broadened and the Lyapunov exponents are Memory difference control overcomes the Lyapunov
smaller, equivalent to faster convergence. The measurememgmber limitations of difference control and thus appears to

are in good agreement with our theoretical predictidfi§.  be superior both to OGY and Pyragas control schemes.
8). Due to noise-induced loss of control, it was impossible to

obtain reliable measurements for largfe of the caseN
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